
Lycée Rosa Parks Baccalauréat blanc

BACCALAURÉAT BLANC

SESSION DE MARS 2024

Épreuve de l’enseignement de spécialité

NUMÉRIQUE et SCIENCES INFORMATIQUES
Partie écrite

Classe terminale de la voie générale

Épreuve 2

DURÉE DE L’ÉPREUVE : 3 heures 30 minutes

Le sujet comporte 13 pages numérotées de 1 à 13, ainsi qu’une annexe, ajoutée à la
fin du sujet. Dès que le sujet vous est remis, assurez-vous qu’il est complet.

Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements en-
treront pour une part importante dans l’appréciation des copies.

L’usage de la calculatrice est interdit.

Page 1/13

Lycée Rosa Parks Baccalauréat blanc

1 Exercice 1 (6 points)

On s’intéresse a l’évaluation d’expressions mathématiques, comportant uniquement des addi-
tions et des multiplications. On utilisera pour cela les structures de file et de pile, dont les
interfaces sont données ci-dessous.

Interface de la classe Pile

Pile(): crée une pile vide
empile(el): empile l’élément el au sommet de la pile
depile(): supprime et renvoie l’élément au sommet de la pile déclenche une erreur si la pile
est vide
est_vide(): renvoie True si la pile est vide, False sinon

Interface de la classe File

File(): crée une file vide
enfile(el): ajoute I’élément el a la queue de la file
defile(): supprime et renvoie l’élément en téte de la file déclenche une erreur si la file est
vide
est_vide(): renvoie True si la file est vide, False sinon

Afin de tenir compte des priorités des opérations, on représente ces expressions par des arbres
binaires. Ainsi, l’expression 1 + 5 x (3 + 9) est représentée par l’arbre suivant.

1. Donner l’expression représentée par l’arbre ci-dessous.

Page 2/13

Lycée Rosa Parks Baccalauréat blanc

2. On décide d’implémenter en Python un arbre binaire a l’aide de la classe Noeud ci-
dessous :

class Noeud:
def __init__ (self , etiquette , gauche , droit):

self.etiq = etiquette
self.sag = gauche
self.sad = droit

Un sous-arbre vide sera représenté par None.

Dessiner l’arbre expression qui est défini par le code suivant

feuille2 = Noeud("2", None , None)
feuille3 = Noeud("3", None , None)
feuille4 = Noeud("4", None , None)
feuille5 = Noeud("5", None , None)
feuille6 = Noeud("6", None , None)
noeud0 = Noeud("*", feuille2 , feuille3)
noeud1 = Noeud("+", feuille5 , noeud0)
noeud2 = Noeud("+", feuille6 , feuille4)
expression = Noeud("*", noeud2 , noeud1)

3. Le parcours suffixe (aussi appelé postfixe) d’un arbre représentant une expression math-
ématique permet d’en obtenir une représentation appelée notation polonaise inversée.

a. Donner la liste des étiquettes de l’arbre de la question 1 (Figure 2) dans l’ordre du
parcours suffixe de cet arbre.

b. On donne ci-aprés trois propositions de fonctions récursives dont le premier paramétre
est un arbre représentant une expression mathématique et le deuxiéme est une file
initialement vide. Laquelle de ces fonctions renvoie la file contenant les étiquettes
de l’arbre dans l’ordre du parcours suffixe ?

Proposition 1

def suffixe (arbre , file):
if arbre != None:

file.enfile(arbre.etiq)
parcours_g = suffixe (arbre.sag , file)

Page 3/13

Lycée Rosa Parks Baccalauréat blanc

parcours_d = suffixe (arbre.sad , file)
return file

Proposition 2

def suffixe (arbre , file):
if arbre != None:

parcours_g = suffixe (arbre.sag , file)
file.enfile(arbre.etiq)
parcours_d = suffixe (arbre.sad , file)

return file

Proposition 3

def suffixe (arbre , file):
if arbre != None:

parcours_g = suffixe (arbre.sag , file)
parcours_d = suffixe (arbre.sad , file)
file.enfile(arbre.etiq)

return file

4. L’évaluation d’une expression mathématique consiste a effectuer les différentes opéra-
tions pour obtenir le résultat du calcul correspondant.

On donne un algorithme qui permet d’évaluer une expression donnée sous la forme d’un
arbre :

• On effectue un parcours suffixe de cet arbre pour obtenir une file contenant ses
étiquettes dans l’ordre de la notation polonaise inversée.

• Pour chaque élément défilé,

– si c’est un nombre, on l’empile ;
– si c’est un opérateur (’+’ ou ’*’), on dépile les deux éléments d et g au sommet de

la pile, et on empile le résultat de l’opération appliquée a g et d

• Lorsque la file est vide, la pile contient un seul élément : le résultat de l’évaluation
de l’expression.

Par exemple. lors de l’évaluation de l’expression en notation polonaise inversée 3 10 +
5 x, voici les différents états de la pile, suite au défilement d’un élément :

Elément défilé 3 10 + 5 x
10 5

Pile 3 3 13 13 65

La fonction evalue(arbre) implémente cet algorithme. Elle renvoie le résultat de l’évaluation
d’une expression mathématique représentée par un arbre binaire arbre passé en paramétre.

Sur votre copie, recopier et compléter cette fonction.

On pourra utiliser la fonction calcul définie ci-dessous :

def calcul(symbole , x, y):
if symbole == ’+’:

return int(x) + int(y)
else:

return int(x) * int(y)

Page 4/13

Lycée Rosa Parks Baccalauréat blanc

def evalue(arbre) :
f = suffixe (arbre , File ())
p = Pile ()
while ... :

elt = f.defile ()
if elt == ’+’ or elt == ’*’:

... # plusieurs lignes
else:

...
return ...

2 Exercice 2 (6 points)

Les deux parties de cet exercice sont indépendantes.

Le jeu de go est un jeu de société originaire de Chine. II oppose deux adversaires qui placent a
tour de réle des pierres, respectivement noires et blanches, sur un plateau.

Partie A : Réseau

Baduk et Igo jouent une partie de go grace a une application en ligne, hébergée sur un serveur.
La portion de réseau au voisinage des ordinateurs de Baduk, d’lgo et du serveur de jeu est
représentée ci-dessous.

1. Les tables de routage des routeurs sont les suivantes. La métrique permettant ici de
décider du meilleur chemin vers un routeur distant est le nombre de sauts.

R1
destination passerelle métrique
R2, R3, R5 - 1

R4 R5 2
R6 R3 2

R2
destination passerelle métrique

R1, R4 - 1
R3, R5, R6 R4 2

Page 5/13

Lycée Rosa Parks Baccalauréat blanc

R3
destination passerelle métrique

R1, R4, R5, R6 - 1
R2 R4 2

R4
destination passerelle métrique

R2, R3, R5, R6 - 1
R1 R2 2

R5
destination passerelle métrique
R1, R3, R4 - 1

R2 R1 2
R6 R4 2

R6
destination passerelle métrique

R3, R4 - 1
R1, R5 R3 2

R2 R4 2

Igo effectue un coup grace a son application puis Baduk joue a son tour. Les données par-
tent de la machine d’lgo vers le serveur puis sont transmises a la machine de Baduk. Les
données du coup de Baduk sont envoyées de sa machine vers le serveur puis transmises
a la machine d’Igo.

En utilisant les tables de routage fournies, indiquer un chemin emprunté par les données
lors de ces échanges.

2. Recopier la table de routage du routeur R3 avec une mise a jour possible suite a la rupture
de la liaison entre les routeurs R3 et R4.

Partie B : Base de données

Dans cette partie, on pourra utiliser les mots clés suivants du langage SQL.

SELECT, INSERT INTO, DISTINCT, WHERE, UPDATE, JOIN, COUNT, MIN, MAX, ORDER BY

La fonction d’agrégation COUNT(*) renvoie le nombre d’enregistrements de la requéte. Les
fonctions d’agrégation MIN(propriete) et renvoient respectivement la plus petite et la plus
grande valeur de l’attribut propriete pour les enregistrements de la requéte. La commande
ORDER BY propriété permet de trier les résultats d’une requéte selon l’attribut propriété.

Le responsable de la fédération internationale de jeu de go enregistre dans une base de données
les résultats de parties historiques.

ll définit pour cela des relations Joueur, Partie et Tournoi qui suivent le schéma relationnel
suivant (les clés primaires sont soulignées et les clés étrangéres sont précédées du caractére
#).

Les clés primaires sont soulignées et les clés étrangéres sont précédées du caractére #.

Page 6/13

Lycée Rosa Parks Baccalauréat blanc

Ainsi l’attribut idjnoir de la relation Partie est une clé étrangére qui fait référence à l’attribut
idjoueur de la relation Joueur.

idjnoir et idjbanc identifient les joueurs ayant respectivement les pierres noires et les pier-
res blanches.

1. On suppose que ce schéma relationnel a été implémenté dans un systéme de gestion de
base de données. La base de données est vide et on souhaite enregistrer les résultats
d’un premier tournoi a l’aide des commandes SQL suivantes.

1 INSERT INTO Tournoi (idtournoi , nom , pays)
2 VALUES (1, ’Osaka ’, ’Japon ’);
3
4 INSERT INTO Partie (idjnoir , idjblanc , tournoi , jour , score)
5 VALUES (2, 3, 1, ’1846 -09 -12 ’, -2);
6
7 INSERT INTO Joueur (idjoueur , nom , naissance , nation)
8 VALUES (1 ,’Dosaku ’, 1645 , ’Japon ’),
9 (2, ’Genan␣Inseki ’, 1798 , ’Japon ’),

10 (3, ’Shusaku ’, 1829 , ’Japon ’);

a. Quelle est la nature de l’erreur produite par l’exécution de cette succession de com-
mandes ? Justifier.

b. Comment corriger la succession des commandes SQL données pour que le traite-
ment s’effectue sans erreur ?

On donne ci-dessous un extrait des enregistrements contenus dans la base de données.

Joueur
idjoueur nom naissance nation

1 Dosaku 1645 Japon
2 Genan Inseki 1798 Japon
3 Shusaku 1829 Japon
4 Kitani Minuro 1909 Japon
5 Go Seigen 1914 Chine
6 Sakata Eio 1920 Japon
7 Rin Kaiho 1942 Taiwan
8 Cho Chikun 1953 Corée
9 Rui Naiwei 1963 Chine

10 Lee Changho 1975 Corée

Page 7/13

Lycée Rosa Parks Baccalauréat blanc

Partie
idjnoir idjblanc tournoi jour score

2 3 1 1846-09-12 -2
4 5 0 1933-11-12 0
5 4 2 1939-09-28 2
5 6 0 1953-11-19 999
5 4 3 1961-06-28 999
6 5 3 1962-08-05 0
7 6 3 1967-08-09 2
7 8 4 1983-05-16 999

10 8 6 1993-04-24 0.5
9 10 5 2000-01-04 999

Tournoi
idtournoi nom pays

0 Inconnu Autre
1 Osaka Japon
2 Kamakura games Japon
3 Meijin Japon
4 Honinbo Japon
5 Guksu Corée
6 Ton Yang Cup Corée

2. On considère la requéte SQL ci-dessous

SELECT COUNT (*) FROM Partie
WHERE idjnoir = 10 OR idjblanc = 10;

a. Quel serait l’affichage produit par cette requête, appliquée aux seuls extraits des
enregistrements donnés dans les tableaux précédents ?

b. Expliquer avec une phrase ce que renvoie cette requête (dans le contexte des tournois
de go).

3. Proposer une requête qui renvoie, dans l’ordre alphabétique, les noms des tournois ayant
eu lieu en Corée.

4. Expliquer avec une phrase ce que renvoie la requête ci-dessous

SELECT DISTINCT nom
FROM Joueur
JOIN Partie

ON (Joueur. idjoueur = Partie. idjnoir
OR Joueur. idjoueur = Partie. idjblanc)

WHERE Partie. tournoi = 4;

5. Proposer une requête qui renvoie le nom des tournois dont des matchs ont été joués après
le 1er janvier 2000.

Page 8/13

Lycée Rosa Parks Baccalauréat blanc

3 Exercice 3 (8 points)

Au jeu de go, les deux adversaires placent a tour de rôle des pierres, respectivement noires
et blanches, sur les intersections d’un plateau quadrillé appelé goban. Une partie se joue
généralement sur un goban de 19 x 19 intersections, mais des gobans de 13 x 13 et 9 x 9
peuvent étre utilisés pour s’entrainer.

On a reproduit ci-dessous un début de partie sur un goban de 19 x 19.

On s’intéresse dans cet exercice a l’une des règles du jeu de go, dite d’encerclement, pour
laquelle on doit compter ce qui s’appelle les libertés d’une pierre ou d’une chaine de pierres.

Les libertés d’une pierre sont les intersections libres autour d’elle selon les quatre directions
cardinales (nord, sud, est et ouest). Dans chacun des exemples suivants, on donne le nombre
de libertés de chacune des pierres noires

On appelle chaine de pierres une suite de pierres liées entre elles selon les directions cardi-
nales. Le nombre de libertés d’une chaine de pierres s’obtient alors en comptant, sans répéti-
tion, les libertés de chacune des pierres qui la composent.

Les exemples ci-dessous mettent en lumière cette règle sur une chaine de pierres.

Page 9/13

Lycée Rosa Parks Baccalauréat blanc

On se propose de représenter un état du jeu sur un goban n x n (ou n peut valoir uniquement
9, 13 ou 19) par une liste de n listes toutes de longueur n. Chaque intersection sera définie par
un numéro de ligne i et un numéro de colonne j.

L’intersection en haut à gauche (nord - ouest) est repérée par les indices i = 0 et j = 0 tandis
que celle en bas à gauche (sud - ouest) est repérée par les indices i = n - 1 et j = 0.

Pour chaque intersection,

• la présence d’une pierre noire est codée par le nombre 1,

• la présence d’une pierre blanche par le nombre -1,

• l’absence de pierre par le nombre 0

Par exemple, voici un goban de 9 x 9 et sa représentation par la liste goban

goban = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0,-1, 0,-1, 1, 0, 0, 0],
[0, 0, 0, 0,-1, 0, 1, 1, 0],
[0, 0,-1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0,-1, 0, 0],
[0, 0, 1, 1, 0, 0,-1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]

1. a. Donner la valeur de goban[2][5]. En déduire ce qui se à l’intersection correspon-
dante.

b. Sur votre copie, recopier et compléter la fonction ci-dessous afin qu’elle renvoie la
représentation d’un goban de n x n vide.

def creer_goban_vide (n) :
assert n==9 or n==13 or n==19 , "valeur␣de␣n␣non␣

permise "
... # plusieurs lignes

c. Que se passe-t-il lors de l’appel creer_goban_vide(11) ? Expliquer.

Pour la suite de l’exercice, on aura besoin de la fonction est_valide(i, j, n) définie
par le code suivant :

Page 10/13

Lycée Rosa Parks Baccalauréat blanc

def est_valide (i, j, n):
return 0 <= i < n and 0 <= j < n

Cette fonction renvoie la valeur True si les indices i et j passés en paramétres représen-
tent une position valide sur un goban n x n, et False sinon.

Cette fonction pourra être utilisée dans la suite de cet exercice.

2. La fonction libertes_pierre(plateau, i, j) a pour paramétres une liste plateau
représentant un goban et des indices i et j qui repérent l’intersection ou se situe une
pierre. Cette fonction renvoie les positions des intersections libres autour de cette pierre
sous la forme d’une liste de tuples où chaque tuple est l’une de ces positions.

Par exemple, si goban représente le goban ci-dessous, l’appel libertes_pierre(goban,
4, 2) renvoie une liste qui contient, dans un ordre quelconque, les tuples (4, 1) et (3,
2)

Sur votre copie, recopier et compléter le code ci-dessous

def libertes_pierre (plateau , i, j):
intersections = []
n = len(plateau)

... # plusieurs lignes

return intersections

3. Une chaine de pierres sera représentée par une liste de tuples qui repèrent leurs po-
sitions. Afin de calculer le nombre de libertés d’une chaine de pierres, on examine les
libertés, sans répétition, de chacune des pierres qui la composent

On utilise pour cela un dictionnaire marquage dont les clés sont des libertés (tuples des
positions) et les valeurs sont True si la liberté a déjà été comptée.

Pour illustrer le rôle du dictionnaire marquage, on considére, sur le goban ci- dessous, la
chaine formée des pierres dont les positions sont les tuples (3, 1), (2, 1) et (2, 2)

Page 11/13

Lycée Rosa Parks Baccalauréat blanc

En supposant que le premier tuple examiné est (3, 1), le dictionnaire marquage con-
tiendra alors les valeurs ci-dessous

marquage = {(3, 0): True , (4, 1): True , (3, 2): True}

Ainsi, la liberté correspondant au tuple (3, 2) ne sera pas comptée une nouvelle fois
lors de l’étude du tuple (2, 2) car marquage[3, 2] existe déja et vaut True.

La fonction nb_liberte_chaine(plateau, chaine) prend en paramétres une liste plateau
représentant un goban et une liste chaine représentant une chaine de pierres, et renvoie
le nombre de libertés de la chaine.

Sur votre copie, écrire la sequence d’instructions qui sera exécutée dans la boucle for i,
j in libertes_pierre(plateau, pi, pj)

def nb_liberte_chaine (plateau , chaine) :
n = len(plateau)
marquage = {}
nb_libertes = 0
for pos in chaine:

pi = pos [0]
pj = pos [1]
for i, j in libertes_pierre (plateau , pi , pj):

... # plusieurs lignes

return nb_libertes

4. Lorsqu’une chaine ne posséde aucune liberté, on dit que les pierres qui la constituent
sont prisonniéres, et celles-ci sont retirées du goban.

Dans l’exemple ci-dessous, la chaine formée des trois pierres situées aux intersections
repérées par les tuples (4, 2), (3, 2) et (3 , 3) n’ont plus de libertés : elles sont donc
prisonniéres et sont retirées du goban.

On souhaite écrire une fonction qui, si le nombre de libertés d’une chaine est nul, renvoie
le nombre de pierres prisonniéres et supprime ces pierres du goban et renvoie None
sinon. Ecrire une telle fonction supprime_prisonniers(plateau, chaine). Elle a pour
paramétres une liste plateau représentant un goban et une liste chaine représentant
une chaine de pierres.

5. On souhaite maintenant écrire une fonction cherche_chaine qui construit, étant donnée
la position (pi, pj) d’une pierre, la chaine de pierres qui contient cette pierre. Pour
cela, on examine récursivement les pierres voisines de même couleur et on ajoute leurs
positions a une liste chaine initialement vide.

Page 12/13

Lycée Rosa Parks Baccalauréat blanc

Sur votre copie, recopier et compléter les lignes 6 et 7 de cette fonction.

1 def cherche_chaine (plateau , pi , pj , chaine):
2 n = len(plateau)
3 chaine. append ((pi , pj))
4 couleur = plateau [pi][pj]
5 for i, j in [(pi+1, pj), (pi -1, pj), (pi , pj +1) , (pi , pj

-1)]:
6 if est_valide (i, j, n) and ... and ...:
7 cherche_chaine (...)
8 return chaine

Par exemple, pour le goban ci-contre, l’appel
cherche_chaine(goban, 3, 1, []) renvoie la liste [(3,
1), (4, 1), (2, 1), (2, 2), (2, 3)].

Page 13/13

	Exercice 1 (6 points)
	Exercice 2 (6 points)
	Exercice 3 (8 points)

